Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно.
Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет.
В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.
Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем.
Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду.
Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии.
Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.
е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную.
Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.
Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.
Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.
- Следовательно, наиболее чистый, безопасный источник энергии — Солнце!
- Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.
- Пассивные системы использования солнечной энергии.
Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию, превращает ее в тепловую — вода нагревается.
Однако, есть более прогрессивные методы пассивного использования солнечной энергии.
Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию.
Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.
Современные строительные конструкции учитывают географическое положение зданий.
Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.
Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов.
Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас.
Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.
Активные системы использования солнечной энергии
В основе активных систем использования солнечной энергии применяются солнечные коллекторы.
Коллектор, поглощая солнечную энергию, преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д.
Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.
Виды коллекторов
воздушный солнечный коллектор
Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент.
В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым.
А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.
Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.
Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления.
Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает.
Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.
Солнечные коллекторы могут быть плоскими и вакуумными.
плоский солнечный коллектор
Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий.
Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь.
Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).
Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.
вакуумный солнечный коллектор
Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб.
Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель.
В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.
Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:
— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака
— могут работать при минусовых температурах.
Солнечные батареи.
Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.
Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.
Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места.
Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности.
Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.
Солнечные батареи имеют свои недостатки в применении:
— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)
— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)
— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)
Использование солнечных энергетических систем в строительстве.
В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах.
Эти здания используют тихий, надежный и безопасный источник энергии — Солнце.
Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.
Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.
![]() Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года. |
![]() |
Использование систем солнечной энергии в мире.
Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.
Во многих странах мира разработаны государственные программы развития использования солнечной энергии. В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др.
стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.
Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.
Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.
В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.
Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии.
Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.
В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители.
Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии.
На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.
Способы и особенности использования энергии солнца на земле
Солнце является одним из возобновляемых альтернативных источников энергии. На сегодняшний день альтернативные источники тепла широко используют в аграрном хозяйстве и в бытовых нуждах населения.
Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.
Возобновляемые источники тепла, люди начали использовать еще много лет назад, когда современных технологий еще не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.
Сферы использования солнечной энергии
С каждым годом применение энергии солнца набирает все больше популярности. Еще несколько лет назад ее применяли в целях подогрева воды для дачных домов, летних душей, а сейчас возобновляемые источники тепла применяют для выработки электричества и горячего водоснабжения жилых домов и промышленных объектов.
На сегодняшний день возобновляемые источники тепла используют в следующих сферах:
- в аграрном хозяйстве, в целях электрообеспечения и отопления парников, ангаров и других построек;
- для электроснабжения спортивных объектов и медицинских учреждений;
- в сфере авиационной и космической промышленности;
- в освещении улиц, парков, а также других городских объектов;
- для электрификации населенных пунктов;
- для отопления, электроснабжения и горячего водоснабжения жилых домов;
- для бытовых нужд.
Особенности применения
Свет, который излучает солнце на земле, при помощи пассивных, а также активных систем превращается в тепловую энергию.
К пассивным системам относятся здания, при строительстве которых применяют такие стройматериалы, которые наиболее эффективно поглощают энергию солнечной радиации.
В свою очередь, к активным системам относятся коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество. Рассмотрим подробнее как правильно использовать возобновляемые источники тепла.
Пассивные системы
К таким системам относят солнечные здания. Это здания, построенные с учетом всех особенностей местной климатической зоны. Для их возведения применяют такие материалы, которые дают возможность максимально использовать всю тепловую энергию для обогрева, охлаждения, освещения жилых и промышленных помещений. К ним относят следующие строительные технологии и материалы: изоляцию, деревянные полы, поглощающие свет поверхности, а также ориентацию здания на юг.
Такие солнечные системы позволяют осуществить максимальное использование солнечной энергии, к тому же они быстро окупают расходы на их возведение за счет снижения энергозатрат. Они являются экологически чистыми, а также позволяют создать энергетическую независимость. Именно из-за этого использование таких технологий очень перспективно.
Активные системы
К этой группе относят коллекторы, аккумуляторы, насосы, трубопроводы для теплоснабжения и горячего водоснабжения в быту. Первые устанавливают непосредственно на крышах домов, а остальные располагают в подвальных помещениях, чтоб использовать их для горячего водоснабжения и теплоснабжения.
Солнечные фотоэлементы
Чтоб более эффективно реализовывать всю солнечную энергию применяют такие источники энергии солнца, как фотоэлементы, или как их еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.
Такие фотоэлектрические преобразователи как источники энергии солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.
На сегодняшний день солнечные батареи, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.
Солнечные коллекторы
Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы:
- Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения;
- Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде;
- Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок;
- Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов. В быту подогретая вода собирается в специальном баке — накопители и далее используется для различных нужд.
Использование энергии солнца коллекторами осуществляется путем накапливания ее в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объема солнечного света, окрашивают в черный цвет.
Солнечные коллекторы используют для подогрева воды для горячего водоснабжения и отопления жилых домов.
Преимущества солнечных установок
- они полностью бесплатны и неисчерпаемы;
- имеют полную безопасность в использовании;
- автономны;
- экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок;
- их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении;
- долговечны;
- просты в использовании и в обслуживании.
Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.
Использование солнца в быту — эффективный способ получения энергии
Солнце – неисчерпаемый источник энергии, который начали активно использовать для получения энергии ещё в начале 20 века. Учёные со всего мира уже не в первый раз доказывают, что использование солнца в быту – отличный вариант получения альтернативной энергии, которая доступна каждому, а эффективность такого метода очень высока.
Использование солнечной энергии
Существует два вида систем использования солнца:
- Активные (солнечные коллекторы, электростанции);
- Пассивные (проектирование и строительство дома с учётом максимального использования энергии солнца).
Из активных методов чаще всего используются солнечные панели. Данная конструкция, поглощая солнечную энергию, вырабатывает тепло, которое в дальнейшем используется для отопления дома и нагрева воды. Коллекторы используют не только в промышленности, но и на частных территориях.
Также активно применяются панели с фотоэлементами. Данная конструкция отлично подходит для бытовых и промышленных условий, при этом панели просты в использовании и не требуют особого ухода.
Третий вариант – солнечные электростанции, их используют для масштабных преобразований солнечной энергии в тепло и электричество. Это наиболее популярный метод использования энергии солнца, поэтому количество станций с каждым годом растёт.
Применение солнца в быту
Благодаря альтернативному варианту отопления, можно прилично сэкономить на коммунальных услугах. Счастливыми обладателями солнечных коллекторов чаще всего становятся хозяева загородных домов, ведь такое оборудование обеспечит вас не только тёплой водой, а также светом и теплом.
Энергию солнца можно использовать для следующих целей:
- обогрев дома;
- нагрев воды;
- освещение переулков и улиц.
Ежедневно солнце и так обогревает Ваш дом, но иногда этого тепла не достаточно. Поэтому стоит внести некоторые правки и определённую технику при строительстве дома. На выходе, Вы построите дом с улучшенной теплорегуляцией.
Для нагрева воды используется специальное недорогое оборудование, которое быстро окупится и снизит ваши затраты на энергоснабжение. Пожалуй, это самый дешёвый способ, который доступен человеку.
Для того чтобы осветить улицы в тёмное время суток, используют устройства, способные поглощать солнечный свет днём. Такой способ прекрасно подходит и уже используется для владельцев загородных участков.
Таким образом, сферы использования солнечной энергии будут расти с каждым годом, а при правильном применении данного оборудования, большая часть территории нашей страны может обеспечить себя всеми видами энергоснабжения
Применение солнечной энергии
Ежегодно используемое нами количество полезных ископаемых равно тому количеству, которое былопроизведено природой за миллионы лет.
Эти запасы ограничены и, по мнению многих специалистов, более половина из них исчерпывается в течение одной человеческой жизни.
Этот факт должен нас подвигнуть на действия, направленные на получение энергии из возобновляемых источников: воды, ветра, земли, солнца. Солнце является неисчерпаемым источником энергии.
Ежегодно на землю попадает большое количество солнечного тепла, которое в 14000 раз больше всемирно-потребляемой энергии.
Наибольшим опытом использования солнечной энергии обладают богатые страны западной Европы.
При помощи различных форм, финансовых стимулов, население данных стран все больше и больше инвестиций вкладывает в возобновляемые источники энергии.
Больше всего солнечных коллекторов в Европе установлено в Австрии и Греции, где на 1000 жителей приходится около 300 квадратных метров солнечных коллекторов.
Где мы можем применить солнечный нагрев, и как эта система работает на практике? Проще говоря, гелиосистемы мы можем использовать везде, где нужна горячая вода, а также обогрев помещений и подогрев воды в бассейнах. Также они могут быть использованы в сельском хозяйстве и промышленности в качестве источника тепла или наоборот холода.
Основой гелиосистемы является солнечный коллектор — солнечные лучи проходят через безопасное солярное стекло с хорошей пропускной способностью и попадают на высокоэффективное селективное покрытие абсорбера. При помощи незамерзающего теплоносителя тепло передается в бак-накопитель или на теплоприемник.
Гелиосистема в большинстве случаев не является единственным источником тепла, для нагрева воды в баке в качестве дополнительного источника тепла необходимы, например камин, котел или электрический ТЭН.
Данные источники используются в основном в то время, когда долго нет солнца или в зимние месяцы, когда интенсивность солнечного излучения снижается.
Существует несколько типов солнечных коллекторов разных конструктивных решений. Ведущим Европейским производителем плоских термических солнечных коллекторов является компания ThermoSolar Viar. В настоящее время здесь производят более 10 типовых моделей с обозначением TS.
Наиболее востребованным коллектором является тип TS300 с очень хорошим соотношением цены и производительности. Предприятие ThermoSolar является одним из не многих мировых производителей солнечных коллекторов, которые сосредотачивают в одном месте прессование коллекторных ванн, производство селективных конверсионных поверхностей, монтаж коллекторов и производство несущих конструкций.
Можно сказать, что гордостью производителя является уникальный плоский вакуумный коллектор, не имеющий аналогов в мире. В отличие от трубчатого вакуумного коллектора данный тип может быть легко встроен в кровлю и фасады зданий, также он более устойчив к экстремальным погодным условиям.
Укомплектованные коллекторы проходят тщательные испытания, в лабораторных условиях симулируются режимы работы направленные на контроль эксплуатационных характеристик и долговечности коллектора.
В центрально-европейских климатических условиях гелиосистемы чаще всего используются для нагрева воды, дежурного отопления зданий и нагрева воды в бассейнах. Непосредственно перед монтажом необходимо правильно выбрать схему гелиосистемы в зависимости от того, для какой цели она будет служить.
Для нагрева горячей воды в семейных домах, предприятие ThermoSolar предлагает экономичные и оптимально подобранные комплекты, в остальных случаях перед монтажом необходимо разработать проект. Чаще всего коллекторы устанавливаются на южной стороне незатененной, наклонной или ровной кровли.
Если такой крыши нет, коллекторы можно разместить также на фасадах зданий или на других подходящих поверхностях.
Преимущество инсталляции в новых домах состоит в том, что там не делается стандартное распределение горячей воды, а существует возможность дополнительных ответвлений, которые ведут, например к стиральной или к посудомоечной машине.
Использование нагретой воды в стиральной или посудомоечной машине является другим вариантом увеличения рентабельности гелиосистемы, это позволяет одновременно сократить объем вложенных средств.
В реальных условиях за срок службы солнечной установки, средства, вложенные в ее реализацию, многократно окупаются.
Гелиосистемы — это не только модная тенденция новых городов, в деревнях можно просто установить коллекторы как на старые, так и на новые постройки.
В области Коберовы в Чешской республике был реализован проект строительства 13 энергетически-пассивных домов.
Они разработаны так, чтобы потребление энергии при эксплуатации было значительно ниже, чем в обычных семейных домах: — «Составной частью каждого дома является воздухонагревательный отопительный блок, который обеспечивает отопление и проветривание объекта.
Интегрированный накопитель тепла, имеющийся в каждом объекте, обеспечивает аккумуляцию энергии из солярных панелей, а также от камина.
Одновременно он оборудован электрокотлом и энергия, полученная от коллекторов, камина или электрических ТЭНов передается в воздухотехнический блок или идет на горячее водоснабжение. В наших домах солнечные коллекторы используются, прежде всего, для того, чтобы покрывать потребление энергии для нагрева воды в среднем на 60-70 процентов».
На примере таких семейных домов видно, что правильно выбранные и установленные солнечные коллекторы являются также эстетической деталью и практически незаметны в окружающей среде.
Если вы планируете использовать гелиосистему для обогрева помещений и нагрева воды в бассейне — коллекторное поле должно быть больше и без проекта здесь уже не обойтись.
Гелиосистемы для обогрева бассейнов часто выгодно комбинируются с подогревом горячей воды или дежурным отоплением помещений.
Энергия солнца огромна, и люди должны научиться ею правильно пользоваться. Если вы сделаете выбор в пользу данного чистого источника энергии — почувствуете это на своих кошельках, например в виде низких платежей за энергию.
В тоже время вы будете способствовать тому, что в атмосферу будет попадать меньше вредных выбросов и окружающая среда будет оздоравливаться.
Необходимо помнить, что 1 коллектор в течение одного года способен на 300 или 500 кг уменьшить количество углекислого газа в атмосфере, которое бы возникло при нагреве воды при помощи углеводородных видов топлива.
Источник
Солнечная энергия и ее использование
Введение
Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце — это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).
С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.
Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н. э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.
Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной [1].
Использование солнечной энергии
Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы.
Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца. К активным солнечным системам относятся солнечные коллекторы.
Также в настоящее время ведутся разработки фотоэлектрических систем — это системы, которые преобразовывают солнечную радиацию непосредственно в электричество.
Энергия — это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества.
Пассивное использование солнечной энергии
Пассивные солнечные здания — это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна.
Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему [2].
- 1 Активное использование солнечной энергии
- Активное использование солнечной энергии осуществляется с помощью солнечных коллекторов и солнечных систем.
- 1.1 Солнечные коллекторы и их виды
В основе многих солнечных энергетических систем лежит применение солнечных коллекторов.
Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.
Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской «Carnegie Steel Company» изобрел коллектор с теплоизолированным корпусом и медными трубками.
Этот коллектор весьма походил на современную термосифонную систему. К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов.
Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации.
Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью.
Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.
Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.
Интегрированный коллектор
Простейший вид солнечного коллектора — это «емкостной» или «термосифонный коллектор», получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится «одноразовая» порция воды.
Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев.
Такой коллектор — недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами.
Плоские коллекторы
Плоские коллекторы — самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах.
Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым.
В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света).
Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери [3].
1.2 Солнечные системы
Солнечные системы горячего водоснабжения
Горячее водоснабжение — наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя.
Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50–70 % потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования.
В Южной Европе солнечный коллектор может обеспечить 70–90 % потребляемой горячей воды. Нагрев воды с помощью энергии Солнца — очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10–15 %, тепловые солнечные системы показывают КПД 50–90 %.
В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.
Термосифонные солнечные системы
Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов).
В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры.
Термосифонная система делится на три основные части:
- — плоский коллектор (абсорбер);
- — трубопроводы;
- — Бак-накопитель для горячей воды (бойлер).
Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы [4].
1.3 Солнечные тепловые электростанции
В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно.
Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год.
Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации.
Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии.
Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.
Большие зеркала — с точечным либо линейным фокусом — концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину.
Фирма «Luz Corp». установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.
- Существуют следующие виды солнечных концентраторов:
- 1. Солнечные параболические концентраторы
- 2. Солнечная установка тарельчатого типа
3. Солнечные электростанции башенного типа с центральным приемником [5].
Заключение
В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве.
Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед.
Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках.
Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.
Литература:
1. Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1998 г.
2. Жуков Г. Ф. Общая теория энергии.//М: 1995., с. 11–25
3. Видяпин В. И., Журавлева Г. П. Физика. Общая теория.//М: 2005,с. 166–174
4. Дагаев М. М. Астрофизика.//М:2007.
5. Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 2009.
Использование энергии солнца на земле: способы применения и преимущества солнечных установок
О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории.
Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было.
Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.
Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.
Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:
- космос и авиация;
- сельское хозяйство;
- обеспечение энергией спортивных и медицинских объектов;
- освещение участков частных домов или городских улиц;
- использование в быту;
- электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.
Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах.
Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие.
Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».
Особенности применения
Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.
Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.
Пассивные системы
Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.
Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.
Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.
В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает.
Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону.
Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.
Активные системы
Активные солнечные системы получают энергию и преобразуют ее тем или иным способом.
В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем.
Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.
Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.
Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.
Солнечные фотоэлементы
Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов.
Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины.
Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.
Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.
Поэтому обычный состав комплекса выглядит следующим образом:
Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии.
Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления.
Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.
Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.
Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:
- Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
- Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
- Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:
- на основе теллурида кадмия;
- на базе селенида меди-индия;
- на полимерной основе.
Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.
Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.
Солнечные коллекторы
Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы.
Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой.
На практике конструкции солнечных коллекторов несколько отличаются:
- Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
- Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
- Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом
Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен.
Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах.
Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.
Преимущества солнечных установок
- Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
- Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
- Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.
Проблемы использования солнечной энергии
Применение солнечной энергии имеет и некоторые проблемы.
Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий.
Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.
Перспективы развития
Энергия Солнца на Земле неиссякаема.
Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.